
AD-A242 372

Technical Report 1450
October 1991

Parallel Processing
Applied to Computational
Electromagnetics

L. C. Russell
J. W. Rockway

DTIC
%:Nov1 *199tJ

91-15327

Approved for public release; distribution Is unlimited.



NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R. T. SHEARER, Acting
Commander Technical Director

ADMINISTRATIVE INFORMATION

This work was performed under project RV36121 of the Computer Technology
Block Program (N02D). This block is managed by the Independent Exploratory
Development (IED) Program of the Naval Ocean Systems Center, under the
guidance and direction of the Office of the Chief of Naval Research (OCNR-10P).
This work was funded under program element 0602936N and was performed in FY
1991 by Linda C. Russell and John W. Rockway of Codes 824 and 805 respectively,
Naval Ocean Systems Center, San Diego, CA 92152-5000.

Released by Under authority of
J. B. Rhode, Head R. J. Kochanski, Head
EM Technology & Systems Shipboard Communications
Branch Division

MA



SUMMARY

OBJECTIVE

To apply parallel processing techniques to a computational electromagnetic code and
show that high-performance computing can improve the utility and efficiency of techniques
used in ship electromagnetic designs.

RESULTS

" Efficient parallel matrix filling, factoring, and solving routines were developed,
implemented, and evaluated.

" The performances of the parallel matrix factoring and solving routines were
independent of the structure being analyzed, whereas the performance of the parallel
matrix filling routine was found to be very dependent on the structure being ana-
lyzed.

" Several different techniques for mapping the matrix columns onto the processors
were implemented and evaluated.

* Efficiencies for all parallel algorithms increased as the size of the matrix being
solved increased.

" Performance comparisons were made between a MicroVax, the four transputer
array, and the Convex Model C-220 mini-supercomputer.

PAYOFFS

Several payoffs have resulted, or will result, from the work done on this lED project:
" A computer platform now exists for the efficient transition of computational

electromagnetics to high-performance computing. The transputer array can be used
to initiate parallelizing an existing computer code.

" This next-generation increase in processing speed will permit more accurate
modeling of ship topsides and extend the practical method of moments modeling
of ships to high I IF through low UHtF bands. This will make new, innovative ship
designs much more feasible.

" Since topside synthesis is accomplished by iterative analysis, design quality will
significantly improve with the enhanced speed offered by high-performance
computing. Accession For
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1.0 INTRODUCTION

This report presents the findings developed as a result of a Navy-funded Independent
Exploratory Development (IED) investigation. This investigation applied parallel processing
techniques to an existing computational electromagnetic (CEM) code. The goal was to
demonstrate that high-performance computing (HPC) can improve the utility and efficiency
of computational techniques used in ship electromagnetic designs. The parallel processing
platform used was an array of four transputers on a board inside an IBM-compatible PC. The
transputers were run using the ParaSoft Express operating environment. This operating
environment was chosen to allow portability of the code to other HPC platforms and minimize
the number of required programming changes to the CEM code. The CEM code was the
method of moments (MoM) algorithm developed by the University of Houston.

Chapter 2 is a discussion of what parallel processing is and what it means in the world
of HPC. Chapter 3 defines CEM, outlines the MoM algorithm to be parallelized, and describes
why a high-speed computational capability is so important to CEM. Chapter 4 contains a
description and justification of the approach that was used to parallelize the MoM algorithm.
Chapter 5 describes thc implementation of the sequential version of the code first on a PC and
then on a single transputer. Chapters 6 and 7 are detailed descriptions of the technical aspects
of parallelizing the different parts of the MoM code. Chapter 8 gives results and conclusions.
Finally, chapter 9 discusses follow-on work and future technologies.

1.1 BENEFITS FROM lED PROJECT

Prior to presenting the details of this investigation, it is appropriate to comment on the
overall benefits derived from the Navy IED program that funded this investigation of parallel
processing applied to computational electromagnetics.

The funding of this IED task has permitted
" NOSC Principal Investigator (PI), L::.a C. Russell, and Associate

Investigator (AI), John W. Rockway, to establish contact with both
the NOSC and the international HPC communities.

• Scientists and Engineers at the NOSC Model Range to become
aware of parallel processing and HPC.

" The development of future CEM algorithms to be steered by HPC
capabilities.

• Envisioning significant improvements in the design quality of the
next-generation Navy ships.



2.0 PARALLEL PROCESSING

Traditional computers were designed around the von Neumann architecture. In this
architecture, a single processor is connected to a single memory bank by a single communi-
cation bus. These are the computers with which most people are familiar. Vast improvements
in processing capability were achieved by improvements in processor and memory technology.
Most of these improvements were due to decreases in component sizes.

In the last decade, it became apparent that future improvements in processor speeds
would not be as easy to achieve as they were in the past. Super high-speed computers
(supercomputers) were built, but they were extremely costly to develop and usually difficult
to maintain. They were reserved for only the world's most computational intensive problems.
The average person did not have access to them.

Alternative architectures began to emerge. These architectures were based on the idea
of achieving improved computational performance using existing processor technology.
There are two fundamental ways of achieving this, pipelining and replicating. In pipelining,
only one processor is used, but computational improvements are achieved by overlapping
simple operations in time such that the processor is idle a very small percent of the time.
Computations are overlapped with memory fetches and puts. The drawbacks to pipelining
are that there are delays in setting up the pipeline and only simple repetitive operations can
be pipelined. In contrast, replicating involves the use of more than one processor working
simultaneously. Replicating is known as parallel (concurrent) processing.

2.1 CONCEPT OF PARALLEL PROCESSING

The concept of parallel processing had been around for a long time but only recently
was the utility of it generally recognized. By 1986, more than a dozen companies were either
selling or in the process of building parallel processors (Tazelaar, 1988).

The building blocks for parallel processor machines are the individual processors. These
processors do not have to be very sophisticated - the computational speedup comes from the
number of processors used. Often used as building blocks are the Intel 386, the Intel i860, or
the INMOS transputer. These processors are connected to each other by high-speed com-
munication links Usually each processor can be directly connected to no more than four
other processors. This requires that the processors be configured into a communication
architecture. Typical processor configurations include the hypercube, torus, binary tree, linear,
and lattice mesh. The optimum configuration is a function of the number of processors,
communication speeds, and the types of problems to be solved. Some parallel processing
computers have software reconfigurable crossbar switches to allow simplified modification
of the configuration.

The "beauty" of parallel processing is that it is a very inexpensive way to become familiar
with the world of high-performance computing. A starter system of four transputers on a
board which fits into a PC, along with the software needed to operate it, costs only about $5k.
More processors can be added as one's budget allows. An actual parallel desktop super-
computer, Cogent Research's XTM, can be obtained for as low as $20k.
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2.2 CLASSIFICATIONS OF PARALLEL COMPUTERS

The hardware used for parallel computers is classified in several ways. The main
classification is between single instruction multiple data (SIMD) and multiple instruction
multiple data (MIMD). A parallel computer can also be either a shared memory or distributed
memory system. This report is heavily oriented toward distributed memory MIMD systems,
the classification of the transputer.

2.2.1 SIMD vs. MIMD

Traditional single processor von Neumann computers can be thought of as single
instruction single data (SISD). This means that at any given moment only a single instruction
can be operating on only a single data element. In a multiple processor SIMD system, there
is still only a single instruction, but this time it is operating on multiple data elements in a
lock-step fashion. This is similar to how vector processors work. In a multiple processor
MIMD system, there are multiple instructions operating independently on multiple data
elements. Today, many parallel computers are MIMD systems since this configuration offers
the most flexibility. A MIMD system can emulate a SIMD system, but not the other way
around. A SIMD system is, in general, less complicated than a MIMD system and, therefore,
can be faster and less expensive. For certain problems, a SIMD system is well-suited and
significant performance can be obtained. Other problems require a MIMD system.

2.2.2 Shared vs. Distributed Memory

In a shared-memory computer, there is only one bus to connect the processors to the
memory. All processors are directly connected to the entire memory. The advantage is that
every processor can see the entire memory. This saves execution time by reducing the amount
of required interprocessor communication. The disadvantage is that a bottleneck can quickly
develop on the bus if there are more than just a few processors. This is referred to as a von
Neumann bottleneck.

In a distributed-memory computer, each processor has its own independent memory
bank. A processor plus its memory is referred to as a node. Bus bottlenecks cannot occur.
However, the system is now complicated by requiring the individual nodes to be able to
communicate to each other. Communication delays can decrease system performance.
Nonetheless, distributed memory is now the preferred configuration for today's parallel
computers. For efficiency, it is a necessary requirement for massively parallel computers.

2.3 PARALLEL PROGRAMMING LANGUAGES AND OPERATING ENVIRON-
MENTS

In response to the proliferation of parallel hardware systems, a number of high-level

languages with parallel extensions have been developed. These include parallel versions of
Fortran, Pascal, Modula 2, and C (Davidson,1990). There are also some processor-specific
languages such as Occam for the transputer. Processor-specific languages offer the best
performance but also the least portability and require completely rewriting existing codes.



To facilitate program development on parallel computers, a number of parallel operating
environments have been developed. Parallel operating environments allow the actual physical
configuration of the hardware to become transparent to the user. The user does not have to
know whether the processors are connected in a hypercube or lattice mesh configuration, or
even how many processors there are. This allows the software to be much more portable
between computers. Most parallel operating environments alsooffer performance-monitoring
tools and parallel debuggers. Performance-monitoring and debugging are much more difficult
for parallel programs than for sequential programs since not only can the operations and data
be incorrect, but the timing may be off as well.

Express by the ParaSoft Corporation is a parallel operating environment designed to run
on a number of different parallel machines (ParaSoft, 1990a). Express runs under the hosts
standard operating system, can be used with both C and Fortran codes, supports dynamic load
balancing, provides semiautomatic decomposition tools, and includes a source-level debugger
and performance monitor. Code developed under Express has been stated to be portable
between parallel machines provided Express is on both machines.

2.4 PARALLEL ALGORITHMS

Before deciding whether or not to use a parallel computer to solve a problem, the user
must identify the inherent parallel aspects of the problem and determine a suitable hardware.
Some problems have no inherent parallel aspects and should be run on a standard sequential
computer. Many other problems have easily identifiable parallel aspects. The effectiveness
of parallel computing depends on how well one can identify the inherent parallelism in a
problem, develop an algorithm, and map it onto a suitable architecture. The optimal parallel
algorithm is not necessarily the optimal serial algorithm.

There are two basic methods to parallelize a program on a MIMD computer: domain
decomposition and algorithmic decomposition. Domain decomposition consists of having
each processor run the same code, but with the data distributed among the processors. As an
example, for a matrix problem the columns or rows of the matrix may be distributed among
the processors in some fashion. Algorithmic decomposition consists of dividing a program
into sections, and putting different sections of the code on the different processors. The
different sections must be able to run independently. The bulk of the work involved in
parallelizing any code is in determining the correct mix of domain decomposition and algo-
rithmic decomposition to use to achieve the highest possible performance for a wide range of
problems. The user must also decide on the necessary granularity of the problem. Granularity
refers to the amount of time spent computing versus communicating. In course grain problems,
large chunks of the code can be worked on independently. Fine grain problems require
significant amounts of communication between processors.

2.5 PERFORMANCE MEASURING AND DEGRADATION

Performance is measured in several different ways. The four major standards are:
speedup, efficiency, accuracy, and cost-performance ratio. Speedup tells the user how much
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faster a particular algorithm runs on n processors when compared to one. It is the ratio of the
execution time of the algorithm on a single processor, T, to the execution time of the parallel

algorithm (solving the same problem) on n processors, T,:

Speedup = (2-1)

Speedup has a maximum value of n.

Efficiency tells the user how efficiently the n processors are being used. It is defined
as speedup divided by n and expressed as percent (maximum value for efficiency is 100
percent):

Efficiency = Speedup X 100%. (2-2)
n

Accuracy is defined in the usual sense. A parallel program should provide the same
computational accuracy as the corresponding sequential program. Cost-performance refers
to the ratio of the processing power to the purchase price for a parallel computer.

The performance of an algorithm on a parallel computer can be degraded by a number
of things. Mechanisms that can degrade performance are:

" Scheduling: The efficiency with which the available work is distributed among
the processors. This is also referred to as load balancing.

• Communication: Time spent communicating information between nodes
instead of computing.

" Synchronization: Idle time spent by a processor waiting for another processor
to finish a calculation. Often operations need to take place in a defined order.

• Duplication: Work effort that is duplicated in a number of processors. This
often occurs when an algorithm cannot be neatly decomposed.

The first three mechanisms cause processors to sit idle; the last mechanism causes processors
to waste time doing unnecessary work. These problems cannot be avoided completely, but
careful programming can minimize them.

2.6 DRAWBACKS TO PARALLEL PROCESSING

The major drawback to using parallel computers is the amount of work required by the
user to fully exploit their potential. Fc; .inately, with the software that is becoming available
in the form of parallel operating en vironments, such as ParaSoft's Express, this problem is
being mitigated. However, it .ill be a long time before software that will automatically
parallelize any but the simple,t problems will be available.

Another drawback to using parallel computers is that algorithms developed on one
hardware platform may not be easily portable to another hardware platform. Once again,
operating environments like Express are helping to mitigate this problem. However, it is still
not completely possible to divorce the algorithm from the hardware architecture and still
achieve optimum performance.
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2.7 THE TRANSPUTER

Of the many parallel computing building blocks (processors) available today, the
transputer, originally developed by INMOS (1988), is one of the most cost-effective and
flexible. The transputer is actually a computer on a chip. A number of companies have
developed inexpensive transputer-based boards that plug into a PC. These boards can each
hold up to 10 transputer modules (known as TRAMs) and multiple boards can be connected
to provide quite powerful desktop parallel computing platforms.

2.7.1 Transputer Hardware

The transputer uses very large-scale integration (VLSI) technology and is a 32-bit
reduced instruction set computer (RISC) design. This makes it a very powerful processor
capable of performing a 32-bit floating point multiplication in less than one microsecond.
The chip contains a central processing unit (CPU), a floating point processing unit (FPU),
4-KBytes of on-chip static ramdom access memory (RAM), 4 communication links (to host
processor or other transputers), and an external memory interface. The communications links,
floating point processor and CPU can execute concurrently (allowing simultaneous integer
and floating-point computatiors). Integer only transputers can be purchased, but the
floating-point units are more standard for most applications. The standard floating point
transputer is the T800. The 20-MHz T800 has a peak performance of 1.5 Mflops.

The transputer is usually packaged with external RAM into a transputer module
(TRAM). Many sizes of external RAM are available, but the most common TRAMs have
1-MByte of RAM and are size 1. The size of the TRAM refers to the number of slots it takes
up on a motherboard. In other words, a size 1 TRAM requires 1 slot, a size 4 TRAM requires
four slots, and so on. The larger size TRAMs contain more RAM. TRAMs are used as nodes
in MIMD, distributed memory parallel computers. TRAM based parallel computers require
a host computer such as a PC, Vax, or Sun system. A TRAM motherboard fits into any free
slot on the host computer. A software reconfigurable crossbar switch is provided to allow
reconfiguration of the interconnects between individual processors.

2.7.2 Transputer Software

There are several different ways to program an array of transputers. Each method has
tradeoffs in portability, performance, and ease of use. The parallel language, Occam, was
developed concurrently with the transputer. Parallel versions of high-level languages such
as Fortran, C, Pascal, and Modula 2 can be obtained. Tht, parallel operating environment
Express (ParaSoft Corporation, 1990b) is available for transputer systems.

2.7.2.1 Occam. There are a number of advantages to using Occam for programming a
transputer system. Since Occam was developed simultaneously with the transputer, it is one
of the few languages designed for concurrency. Occam has the performance and efficiency
of assembly language. Occam can be used as a harness to link modules written in other
industry-standard languages. Its other features include: well-implemented timing capabilities,
straightforward control of process scheduling, and a high-level structure.

The main disadvantage to using Occam is that programs written in Occam are not
portable to other parallel computers. Existing codes written in other languages need to be
completely recoded. Occam works only with the transputer. Other disadvantages are that
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Occam does not support many features of other high-level languages (no recursion or dynamic
memory allocation), use of it requires learning a new language, and Occam may not be
supported in the future. In the tradeoff space (portability versus performance versus ease of
use) Occam scores high only in performance.

2.7.2.2 High-Level Languages. The advantage of using a parallel version of a high-level
language such as Fortran, C, Pascal, or Modula 2 is that one can use a language with w .,ch
one is already familiar. All that is required is to learn the parallel extensions. Existing
sequential code can be ported over.

There are, however, a number of disadvantages to using a parallel version of a high-level
language. Programming an array of transputers requires the user to develop both a host
program and a node program. The host program runs on the host processor and handles
input/output (I/O) calls and manages the other processors. The node program runs on all the
other processors and does the bulk of the computations. The user is required to maintain two
programs instead of only one program. This can make program development and maintenance
somewhat complex. Performing I/O, making system calls, and timing algorithms can be
difficult. Debuggers for parallel versions of high level languages are starting to appear, but
they are not widely available. Debugging parallel programs is very difficult. In addition to
all this, parallel versions of high-level languages do not offer the performance that one can
get from Occam.

2.7.2.3 Express. Parallel operating environments such as ParaSoft's Express allow the user
the convenience of using a familiar high-level language while mitigating some of the disad-
vantages to parallel high-level languages mentioned in the previous section. Express is based
on the CUBIX programming model developed at CalTech. Express is available for both
Fortran and C. There is no need to develop both a host and node program. Instead, only one
program (that runs on all processors) needs to be developed and maintained. Express does
not include a compiler so one of the parallel high-level language compilers mentioned above
is still needed to compile and link the code. During linking, the Express library is linked into
the user's source code. The Express library provides simple function calls to handle I/O and
system calls. Express also provides timing capabilities, a source-level debugger, and a per-
formance monitor. The number of processors being used does not have to be hardwired into
the code. Instead, this is specified at runtime by a switch in the run command. In addition,
Express is available for a wide variety of parallel machines, not just the transputer. Currently
Express is available for: the multiheaded IBM 3090 (AIX) and the multiheaded CRAY
(UNICOS) mainframes; the Intel iPSC 2 and iPSC 860; the nCUBE I and 2; PC, MAC, and
SUN hosts for transputers; and the IBM RS/6(XX), Silicon Graphics, and SUN workstations.
All these lead to very portable source code.

The only significant disadvantage to Express is that it possibly degrades system per-
formance to some extent. However, this disadvantage is more than offset by the advantage
of having portable code.
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3.0 COMPUTATIONAL ELECTROMAGNETICS

Computational electromagnetics (CEM) is that branch of electromagnetics that routinely
involves using a computer to obtain results. It is a complementary tool to th( -1 .. sical
techniques of experimental observation and mathematical analysis.

The CEM application of interest to the authors of this report is naval ship electromagnetic
design. The specific areas of interest include exterior communications, electromagnetic pulse
protection, antenna design, and scattering characterization.

3.1 ELECTROMAGNETIC MODEL

The electromagnetic model uses transfer functions derived from Maxwell's equations.
The inputs to the transfer functions include a description of the problem as well as the specified
excitation. The problem description is defined in terms of both the electrical and the geo-
metrical properties of the structures and the space in which they reside. The specified cxcitation
can be either a voltage source applied to an antenna or a plane wave impeding on the defined
structure. The outputs from the transfer functions are the induced currents on the structures
and/or the impedance of the antenna. These induced currents can be used to determine both
the near and far fields. Near fields are of interest in determining coupling between antennas
as well as hazards to personnel, fuel, and ordnance. Far fields are used to determine the
performance of a system.

3.2 SHIP EM DESIGN PROCEDURE

This section describes the design procedure used for Navy shipboard exterior radio
frequency (RF) communication system design (Li, Logan, & Rockway, 1988). The approach
is an iteration process by which candidate RF system designs can be analyzed to determine
their relative desirability.

The present procedure for designing a shipboard exterior RF communication system
consists of iterations around two loops as shown in figure 3- 1. In loop 1, an interactive design
model is used to iterate through the various proposed design changes. Given a proposed
design, as depicted in an RF system diagram, a designer sets requirements on the space isolation
between transmit and receive antennas. By comparing the required antenna isolation with the
achieved antenna isolation, the design determines whether additional antenna isolation is
needed between transmit and receive antennas to obtain a compatible system. The achieved
antenna isolation value is obtained from the topside antenna study.

The output at the intermediate level shown in figure 3-1 is an intermediate design along
with the power and frequency spectrum constraints required forcompatible use of the platform
transmit and reccive subsystems. After the designer decides that significant additional
improvements either are not needed, or are not likely to be found, a performance evaluation
study followed by a link study is performed. The performance measures used are the time
availability of a given quality of service for a given signal and the resulting compatibility
grade. In a case where the design is not acceptable, further modifications to the design can
be made using loop 2 and/or I of figure 3- 1.
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Figure 3-1. Design procedure for a shipboard exterior RF communication system.

3.3 T")PSIDE ANTENNA STUDY

The objective of the topside antenna study is to determine the technical parameters of
the topside antenna element. The technical parameters of an antenna element are completely
specified by the impe dance, near fields, radiation pattern, and coupling to other antenna
elements. These technical parameters are necessary to determine the performance of the total
shipboard exterior communication system.

At the present time, there exist two techniques for performing a topside antenna study:
scale brass modeling and numerical modeling using the numerical electromagnetic code
(NEC). Because of the complexity of the systems involved, the application of analytical
techniques has very limited utility.

3.3.1 Brass Modeling

Scale-brass ship models are used on a model range to do experimental observations
using radiation which is also scaled in frequency. There are a number of drawbacks to using
scale models. Scale models are time-consuming to build and difficult to modify. It is very
difficult to measure near fields for scale models. Worst of all, scale models are limited to
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perfect conductors since Ponperfect conductors have frequency-dependent electric and
magnetic properties. The Navy is planning on using composite materials for the next gen-
eration of Navy ships.

3.3.2 Numerical Electromagnetic Code

The numerical electromagnetic code (NEC) was developed for antenna modeling. NEC
includes the NEC-method of moments (NEC-MoM), NEC-basic scattering, and NEC-reflector
antenna codes (Li, et al., 1988). All these codes have been validated and extensively docu-
mented. NEC-MoM was developed at the Lawrence Livermore National Laboratory (LLNL).
The NEC-basic scattering code and the NEC-reflector antenna code were developed at Ohio
State University.

At the lower frequencies of interest (generally below 30 MHz), NEC-MoM yields
estimates of the technical parameters of antennas mounted on ships. At the intermediate and
upper frequency ranges, the NEC-basic scattering and NEC-reflector antenna codes, based
on the geometric theory of diffraction (GTD) provide useful information on shipboard antenna
elements.

NEC-MoM is the most advanced computer code available for the analysis of thin wire
antennas. It is a highly user-oriented computer code offering comprehensive capability for
the analysis of the interaction of electromagnetic waves with conducting structures. The
program is based on the numerical solution of integral equations for the currents induced on
the structure by an exciting field.

NEC-MoM combines integral equations for smooth surfaces with one for wires to
provide convenient and accurate modeling of a wide range of applications. The NEC-MoM
model may include nonradiating networks and transmission lines, perfect and imperfect
conductors, lumped element loading, and ground planes. The ground plane may be perfectly
or imperfectly conducting. Excitation may be via an applied voltage source or incident plane
wave. The output may include currents and charges, near and far zone electric or magnetic
fields, and impedance or admittance. Many other commonly used parameters such as gain
and directivity, power budget, and antenna-to-antenna coupling are also available.

The NEC-basic scattering code (BSC) is a user-oriented computer code for the analysis
of the Fresnel region fields and the far-field patterns of antennas in the presence of perfectly
conducting metal structures at intermediate and upper frequency ranges. Complicated
structures can be simulated by arbitrarily oriented flat plates, an infinite ground plane, and a
finite elliptic cylinder. The analysis is based on uniform asymptotic techniques formulated
in terms of the GTD. The GTD approach is useful for a general high-frequency study of
antennas in a complex environment involving structures that are large with respect to the
wavelength in that only the most basic structural features of an otherwise very complicated
structure need to be modeled.

Modeling electrically small structures and antennas can be better accomplished using
an integral-equation solution such as NEC-MoM. The basic scattering code has been inter-
faced with the MoM code so that the capabilities of both methods are used optimally.
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The NEC-reflector antenna code was designed to compute either near-field curves or
far-field patterns of typical Navy reflector antennas. One important feature of the code is the
capability to input a practically arbitrary volumetric feed pattern. The theoretical approach
for computing the fields of the general reflector is based on a combination of the GTD and
aperture integration techniques.

3.4 FUTURE OF COMPUTATIONAL ELECTROMAGNETICS

The drawback to using computational electromagnetics codes such as NEC is the amount
of effort required to develop the input, perform calculations, and interpret the output. Preparing
the input for NEC and evaluating the output can be an overwhelming task. Performing
calculations can be exceedingly time consuming for all but the most simple structures. This
drawback is being addressed in three areas. Design systems such as the numerical electro-
magnetic engineering design system (NEEDS) are being developed to decrease the amount
of effort required to define input and interpret output. Efficient computational methods are
being used to decrease the effort required to perform calculations. Finally, accurate and more
useful algorithms (such as those being developed at the University of Houston) are being used
to improve calculations.

3.4.1 NEEDS
From a user's point of view, the most important aspects of a MoM computer code are

the effort to prepare input data and verify its correctness, the complexity and size of problems
that a given code can solve, the computer resources it requires, and the accuracy that it provides.
Many of these user requirements were being addressed by the NOSC development of the
numerical electromagnetic engineering design system (NEEDS) under Office of Naval
Technology (ONT) sponsorship. A major portion of the NEEDS capability is a workstation
to assist the user in making the modeling process less tedious and more error-free. The
modeling process essentially has three parts: a. Problem definition consists of defining the
geometry of the problem, specifying the electromagnetic parameters such as frequency and
voltage sources, and deciding on controls such as what outputs to produce, which algorithms
to use and whether to perform cost analysis. b. Processing is performed using the NEC
algorithms. c. Solution description consists of thought-enhancing displays and reports as well
as audit trails and data management and analysis. In the future, NEEDS will use expert systems
and graphics techniques to automate the modeling process and guide the engineer from the
preparation of the problem definition through solution description. NEEDS will ensure
compliance to the design procedure, fast and accurate problem definition, and thought-
enhancing output products.

3.4.2 Efficient Computational Methods

The overall effort from problem formulation through discretization and solution of the
resulting complex matrices is compute-bound and expensive. The computer resources
required for a given problem are critical to a user. With the advent of improved MoM
algorithms such as those described below and the development of NEEDS, it is the computing
machine that is becoming the limiting factor in the use of numerical modeling for synthesizing
antenna designs. Developments have concentrated on the implementation of solvers on

11



conventional computing machines. This report documents research investigating the use of
parallel processing in MoM. The emphasis was on determining if the computing machine
limitation to computational electromagnetics could be mitigated.

3.4.3 Advanced Algorithms

From a code developer's point of view, the most important aspects of a computer code
are the formulation, numerical implementation, and the accuracy that is provided. Recently,
advanced MoM algorithms have been developed by Professor Donald Wilton at the University
of Houston (Hwu and Wilton, 1988). Under ONT sponsorship these algorithms are presently
being extended by Professor Wilton to the modeling of composite surfaces. The Wilton (1988)
algorithms invoke the MoM to solve a coupled electric field integral equation for the currents
induced on an arbitrary configuration of perfectly conducting surfaces and wires. This for-
mulation involves defining the tinknown current at points on the surface using a triangular
function expansion and then sampling the formulation using weight functions as defined by
the Galerkin technique.

The Wilton formulation described above is known as the JUNCTION formulation
because of its ability to handle junctions between bodies and wires. JUNCTION provides
more uniform surface current representation than previous versions of MoM, and will be able
to evaluate magnetic and dielectric surfaces.

3.5 THEORY OF JUNCTION

The JUNCTION computer code invokes the MoM to solve a coupled electric field
integral equation (EFIE) for the currents induced on an arbitrary configuration of perfectly
conducting bodies and wires. NEC models conducting bodies either as a wire mesh or as a
surface of magnetic field integral equation (MFIE) patches.

Principal advantages of the wire grid approach are that the geometry is easily specified
for computer input and only one-dimensional integrals need to be evaluated. The wire grid
modeling approach, however, often proves unsatisfactory where near-field quantities such as
surface currents or input impedance are desired. One obvious difficulty is in interpreting
computed wire currents as equivalent surface currents. Also, the storage of energy in the
neighborhood of a wire mesh is not completely equivalent to that of a continuous surface. As
a result, computed resonant frequencies and reactive components of computed impedances
are often shifted from their correct values. Modeling using the MFIE patch is limited to
surfaces that are closed and are smooth and, therefore, lacks application to many "real world"
problems.

There are three principal advantages to the JUNCTION formulation. First, the EFIE
formulation for the surfaces of bodies, in contrast to the magnetic field integral equation
(MFIE), applies to open bodies. Second, JUNCTION allows voltage and load conditions to
be easily specified at terminals defined on the structure. Third, the triangular patches of
JUNCTION are the simplest planar surfaces that can be used to model arbitrary surfaces and
boundaries, and triangular patches permit patch densities to be varied locally so as to model
a rapidly varying current distribution.
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3.5.1 Formulation of JUNCTION

Figure 3-2 shows a sample geometrical structure of a body with perfectly conducting
wires near and connected to a perfectly conducting body. For this general structure, S is used

to denote the surface of the perfectly conducting bodies and wires. SB denotes the surfaces

of the conducting bodies, and Sw denotes the surfaces of the conducting wires. It will be

assumed that this general structure is immersed in an incident electromagnetic field, E'. A
pair of coupled integral equations for this general structure may be derived by requiring the
tangential component of the electric field to vanish on each surface. Thus,

Et = ('oAu + VD).. (3--1)

Figure 3-2. Sample geometriLal structure of a collection of conducting bodies and wires.

The vector potential, A , is given by

A 4J G(R).JdS'+ f I&Ysl .5 (3-2)

and the scalar potential ( by
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where

G(R) = .

R = 7 - r' is the distance between an arbitrarily located observation point at r and a source
point at r' on a perfectly conducting surface, S. s' is the arc length along the wire axis in
the direction denoted by the unit vector §. The radius of the wire is denoted by a and is a
function of the arc length s'. J is the surface current on the body, and I is the current along

the wire. In equations 3-1 through 3-3, k =T, where X is the wavelength. (o is the radian

frequency. t and E are permittivity and permeability, respectively, of the surrounding
medium.

3.5.2 Numerical Procedure

The MoM is a numerical procedure for solving the electric field integral equation 3-1
(Harrington, 1968). Basis functions are chosen to represent the unknown currents. Testing
functions are chosen to enforce the integral equation on the surface of the conducting structure.
With the choice of basis and testing functions a matrix approximating the integral equation
is derived.

3.5.2.1 Basis Function. Three different sets of basis functions are used to represent the
current on a general structure. One basis function represents the currents induced on bodies.
Another basis function represents the currents induced on wires. A third basis function
represents the current in the neighborhood of wire-to-surface junctions. The basis functions
must be linearly independent and capable of approximating the actual surface current. As
shown in figure 3-3, a triangular patch model is used for the bodies. The basis function used
in JUNCTION for representing currents induced on the bodies (SB) is given by

A.(7) = (3-4)

where SB8' is the ± reference triangle attached to the nth nonboundary edge of a body. The

current at a nonconnected edge is zero. The distances from vertex of the triangle opposite the
nth edge, the free vertex, to the nth edge of SR are h, , and p' is the vector from the free

vertex of S. : to the vector r intersecting at the surface SB. The surface divergence of A(r)

is

-B 2
V. A,(r) h (3-5)

As shown in figure 3-4, a tubular segment model is assumed for wires. The basis
function used in JUNCTION for representing currents induced on the wires (Sw) is given by
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Figure 3-3. Arbitrary surface modeled by triangular patches.

,,)= (3-6)

where S ± is the ± reference segment attached to the nth nonboundary node of a wire. The

length of S, relative to the nth node of Sw is h ± , and p' is the vector from the free node

of S ± to the vector T. The surface divergence of A''(r) is
-AW r) + 1 -  (3-7)

Finally, a basis function is associated with wire junctions on the body. A wire-to-surface
junction is assumed to exist only at a triangle vertex. Referring to figure 3-5, the vector basis
function associated with the nth junction is
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SEGMENT

Figure 3-4. Arbitrary wire modeled by tubular segments.

(h'a ) 2  WK I[1 (p'+hj+)2lr (3-8)

and

(r) = jw(7). (3-9)

The double index nI refers to the Ith triangular patch on the body surface at the nth junction.

AB(r) and h are the previously defined body basis functions and the vector distance

respectively. These vectors are associated with the edge opposite the junction vertex SJ .

The total flux from the junction triangles into the wire is normalized to unity if
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Figure 3-5. Geometrical parameters associated with the nth wire-to-surface junction.

K,a = (X =X, 7-Z7. (3 -10)
I' I, c,,

i=1

where cc. is the angle between the two edges of S common to the nth junction vertex. 1,

is the length of the edge opposite S, , and cr is the sum of the nth junction vertex angles. N,

is the number c f patches attached to the nth junction. The surface divergence A,,(r) is derived

from

v. X.(r) =2- 3-

where r intersects S' and
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V, - (3-12)

where r intersects S -.

The current on the surfaces of the bodies SB may now be represented as

ND N.,
r()= EIBX. (r )+I El r) (3-13)

and the total axial current on the wires Sw may be represented as
Nw N,

I/(-)= I" .w lA(T) + IJ , . (T) (3- 14)
M=I X=1

where N, Nw, and Nj are the number of unknown currents on the bodies, wires, and junctions
respectively. Since the surface divergences are proportional to the charge density, the charge
is constant on all body, wire, and junction subdomains.

3.5.2.2 Testing. The next step in applying the MoM is to select a suitable testing procedure.
Referring to figure 3-6, the integral equation on SB is enforced by integrating the vector

component of equation 3-1 parallel to the path from the centroid of SMB + to the middle of the

edge MI and then to the centroid of S" -. Similarly, the integral equation on Sw is enforced by

integrating the vector component of equation 3-1 parallel to the path from the centroid of S w+

to node m and next to the centroid of Sw-. At a junction, the tangential electric field along

a path from the centroid of each junction triangle is integrated to the junction and then along
the wire axis to the center of the attached wire segment. The resulting equations are then
combined into a single equation for the junction by weighting each with the associated triangle
vertex angle, and summing the results for each junction patch. For all path integrals, E and
A are approximated along each portion of the path by their respective values at the centroids.
The integral on Vd' reduces to a difference of scalar potentials at the path end points. This
eliminates the requirement implied in equation 3-1 that 4 be differentiable. Thus, for bodies
equation 3-1 becomes

-B 8+ B]+[D(, B

-I B+) -B + -i -B _ -B _E K),r +E (r1+) +A ) (3-15)

for m = 1,2 ,...,NB.

For wires, equation 3-1 becomes

18



C(a

W+-

Smm

(b) ~ , Tetn pahascaedw hth edge o oy

~~Co[AB e)-W ~ *)~j+V~7)-(Ir )
lmW)W +'r)I>(-6

for~~~~ m=,,..,
For uncions eqatin 3- beome

1+ ~J) jo~~)

- M Sc~j'r)1, +Er* 3-7

19m



for m=1,2 ..., Ni.

For plane wave scattering problems
-1. i^i ) .

E (r) = (E90 + E'O ;0^)e (3-18)

where the propagation vector k is

k = k (sin O' cos Ojf + sin 0' sin O'y + cos Oi£) (3-19)

and (0', 0') define the angle of arrival in the usual spherical coordinate convention and can
be expressed as

0' = cos 0 cos O'.i + cos 0' sin O4' - sin 0'i (3 - 20)

' =_sin0,f + cos '. (3-21)

For antenna radiation problems Ea =E; = 0. In this case, the wire segments attached to a

node or junction m may be thought of as separated by a gap across which the voltage is
specified.

3.5.2.3 Evaluation of Matrix Elements. Substituting the current representations of equations
3-13 through 3-14 into equations 3-15 through 3-17, a system of N linear equations results,
where N = NB + NW + NJ.

IZ881 Wiz84']II81 P [E81 1
EZW ] [ZWW]  [ZW] [wl =[ [EWl (3-22)

Iz' rI [z'Wl IJ I [FI_ [E IJ

where Z is the impedance matrix, I is the current vector, and E is the excitation vector. The
superscripts are B for body elements, W for wire elements, and J for junctions between wires
and bodies. The elements of the submatrices are given by

Z0 =jw[Al+l+ -I' + A -fi- /Y-] +[ I D"- -,,"'+, ,,

cX j(A , m, oA,,. 1. + -I

=A'(r ), M

S=A A'(r', ),M1 +-,u = D(r.j)

, e -jkP

APr A (r)-- dS'
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V'(r)- v .A'(,- - dS'.j4nwO ,s

Solution of the linear system of equations yiel, the set of unknown coefficients used
in the representation of the surface, wire, and junction curi, nts, equations 3-13 and 3-14. Once
these currents are known, the scattered field or any other electromagnetic quantity of interest
may be determined using standard matrix solution routines. JUNCTION uses the LINPACK
subroutines for solving the complex matrix of equation 3-22 using Gaussian elimination.
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4.0 I-PROACH

There were two objectives to this IED investigation. The principal objective was to
demonstrate that parallel processing could improve the utility and efficiency of computational
techniques used in ship electromagnetic design. A secondary objective was to permit the
authors to become familiar with parallel processing techniques and computing platforms. In
light of these objectives the following approach was developed.

4.1 INITIAL PLATFORM

The initial hardware platform chosen was an array of four transputers on a motherboard
that co .1d be installed inside a PC. This decision was based on the low cost, ease of use, and
flexibility of a transputer-based system. Transputer systems provide an inexpensive entry
into the world of parallel processing. For this entry-level application, a decision was made
to purchase only four floating point TRAMs each with one Megabyte of external RAM. These
size 1 TRAMs are an industry standard and provide sufficient memory for most applications
at a reasonable cost and in a compact package.

The four TRAMs plus a motherboard to fit into a PC were purchased from Transtech
Parallel Systems Corporation (120 Langmuir Laboratory, 95 Brown .oad, Cornell Business
and Technology Park, Ithaca, NY 14850-9430. (607) 257-6502, FAX (607) 257-3980). The
TRAMs were Transtech model TTM3-85-F ($875 ea). The motherboard was Transtech model
TMB08 ($732). This motherboard features ten TRAM slots, plugs directly into a free slot on
an IBM PC AT or XT and compatibles, includes an IMSCO04 link crossbar switch for con-
figurable reconnectivity and comes with network configuration software. A photo of the
motherboard with the four TRAMs installed in it is shown in figure 4-1. Additional TRAMs
could be added by simply plugging them in.

4.2 OPERATING ENVIRONMENT

Express by ParaSoft was chosen for the operating environment for the reasons discussed
in section 2.6.2 of this report. Portability was the key feature since the ultimate goal of this
project was to run the code on a high performance computer. The language chosen was Fortran
since this is the principal language of existing computational electromagnetics codes. For
obvious reasons, it was desirable to make as few changes to the existing code as possible.

The PC version of the ParaSoft parallel computing system for Fortran users (Part No.
PS-EXP-F) including parallel environment and parallel monitor were purchased for $1500.
(ParaSoft Corporation, 27415 Trabuco Circle, Mission Viejo, CA 92692. (714)-380-9739)
A compiler is not included and must be purchased separately. The 3L parallel Fortran compiler
was purchased from ParaSoft for $800.
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Figure 4- 1. Photo of Transtech model TMB08 motherboard with four T800 TRAMs.

4.3 ALGORITHM

The computational electromagnetics algorithm chosen to be parallelized was the
JUNCTION code written by the University of Houston. This alge-ithm is discussed in sorne
detail in section 3.5. It is the most recent MoM algorithm available. JUNCTION is written
in Fortran.

Before deciding to parallelize any code it must be deternined whether the nature of the
code lends itself to being parallelized. This is discussed in section 2.4. JUNCTION appeared
to have all the properties indicating it was suitable for running on a parallel computer. nitafl,,
it was unclear whether domain decomposition or algorithmic decomposition (or some
combination of the two) would be the preferred method of parallelizing JUNCTION.

4.4 FINAL PLATFORM

After parallclizing the JUNCTION coxc on the transputer array, the resulting parallel
code would be ported over to a parallel high perfornance computer. This would be necessary
to fulfill the main objective of the IEl) project, namely, to demonstrate improvements to
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computational electromagnetics utility. The array of transputers is limited in memory (1
Megabyte per processor) such that only arrays of dimensions less than 500x500 can be solved.
A parallel high performance computer would not have this limitation.

NOSC Code 70 is purchasing ParSoft Express for their iWarp computer. This makes
the iWarp well-suited for running the parallelized JUNCTION code. Unfortunately, as of
June 1991, the iWarp has still not arrived, and Expiess is not ready for it. Worst of all, the
processors init"Ldly being installed do not support Fortran. Processors which will support
Fortran will be installed sometime in the next fiscal year, so if the iWarp is to be used for the
high- performance computing platform it will have to wait until next year. As of June 1991,
an suitable alternative final platform has not been identified.
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5.0 IMPLEMENTATION OF SEQUENTIAL PROGRAM

The first step in parallelizing an existing program is to verify that the sequential version
of the program works. This is done by running the program on a serial computer, in this case
the PC and a microVax. Once this has been successfully done, the next step is to get the
program to run on a single processor on the parallel computer. This is necessary to eliminate
any problems caused by compiler differences between the serial compiler and the parallel
compiler and also to check out the hardware. Only after this has been completed can the
parallelization of the program be considered.

5.1 JUN7

In October 1990, the authors of this report visited Professor Donald Wilton at the
University of Houston. He gave us the latest version of the JUNCTION code, JUN7.FOR.
He also gave us three example problems. The size of JUN7.FOR is 366938 bytes.

JUN7 was compiled and run on the microVax on all three examples. No problems were
encountered. Several problems were encountered when trying to run JUN7 on the PC using
Microsoft Fortran Version 5.0. The source file needed to be broken up into several smaller
files. The values in the parameter statements for the array dimensions needed to be decreased.
"SAVE" statements are not needed with Microsoft Fortran and resulted in compile errors.
These statements needed to be commented out. Large matrices (greater than 64k) needed to
be declared [HUGE] in each of the subroutines in which they were passed as an argument. If
this was not done, the matrix writes over on itself, resulting in incorrect output. There are
two matrices ETH and EPH, which are both I IOOx 100] complex matrices and can be elimi-
nated. Decreasing the size of these arrays makes the executable code much smaller. The
stack size needed to be increased by using the linker switch /F COO. After these changes were
made the program could be run on the PC using Microsoft Fortran Version 5.0 on all three
examples. The largest problem that could be run on the PC within the 640k limit has 225
unknowns.

5.2 JUNCTION

JUN7 was broken into four separate programs: DATGN, GEOMETRY, CURRENT,
and FIELD. DATGN creates input data set files. GEOMETRY calculates the geometrical
parameters. CURRENT computes the currents and impedance. FIELD computes charges,
near fields, far fields, radar cross sections, and power gain.

The source files, input files, and output files for each program are shown in table 5-1.

The computationally intense programs are CURRENT and FIELD. A decision was
made to initially only put CURRENT on the transputers. Later on, if time allowed, FIELD
would also be parallelized.
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Table 5-1. Breakdown of JUNCTION Code.

PROGRAM SOURCE INPUT OUTPUT
NAME FILES FILES FILES

DATGN DATGN.FOR FOROOI (FREQUENCY DATA SET)
FOR002 (BODY DATA SET)

FOR008 (WIRE DATA SET)

GEOMETRY GEOMETRY.FOR FOROOI FOR003 (BODY DESCRIPTION)
STRUCT.FOR FOR002 FOR009 (WIRE DESCRIPTION)

SUPPORT.FOR FOR008 FORO15 (COMPLETE GEOMETRY

DESCR IPTION)

CURRENT CURRENT.FOR FOR001 FOR004 (COMPUTED CURRENTS)
LINPK.FOR FOR015

ZPK.FOR

POTWR.FOR

POTBD.FOR

SUPPORT.FOR

FIELD FIELD.FOR FOR001 FOR010 (COMPUTED FAR FIELDS)
CHARGE.FOR FOR004 FOROI I (COMPUTED CHARGE DENSITY)
PATTERN.FOR FORO15 FOR016 (COMPUTED NEAR FIELDS)
NEARFOR
POTWR.FOR

POTBD.FOR
SUPPORT.FOR

5.2.1 CURRENT

From a computational standpoint, CURRENT consists of filling the impedance matrix
and the excitation vector shown in equation 3-22, and then solving for the current vector. The
current vector gives the currents on the bodies, wires and junctions. The methods used are
standard matrix manipulation techniques. Once the matrix is filled, Gaussian elimination is
performed using LU decomposition with partial pivoting to factor the matrix. Finally the
current vector is solved for by using backward and forward substitution. The computational
time for filling the matrix elements is proportional to N squared where N is the dimension of
the matrix. The computational time for factoring the matrix is proportional to N cubed.

5.3 TRANSPUTER AND EXPRESS INSTALLATION

The installation of the transputer motherboard with four TRAMs into the PC was
straightforward. The board passed all the diagnostic tests provided with it.
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Installing ParaSoft Express and the 3L parallel Fortran compiler was also straightfor-
ward. Express required about four megabytes of space on the hard disk. The parallel compiler
required about 1.5 megabytes. The transputer board passed the Express diagnostics. Express
can be operated either under DOS or under Microsoft Windows. DOS usage was sufficient
for this project.

A demo program that comes with the 3L compiler was run. This program, which can
be run on up to four transputers, generates the Mandelbrot set and displays it. For comparison
purposes the program was also run on a single transputer. The execution time on the single
transputer is 32 seconds. On the four transputers the execution time is 10 seconds. This is a
speedup of 3.2, an efficiency of 80 percent.

5.3.1 Compiling and Executing

Compiling a program and executing it on the transputer array under Express is very
straightforward. The 3L Fortran parallel compiler is invoked with a command such as

tfc -g -o noddy noddy.f -icubix

where "noddy.f" is the source file. Only one command is required to compile and link the
program, creating the executable "noddy" and linking the Cubix libraries.

The Express kernel is loaded with the single command

exinit

If all goes well a display similar to that of figure 5-1 should appear. The actual location in
memory in which Express is loaded is determined by the configuration file.

The execution of the program on the array of transputers is achieved simply by executing
the cubix command. In the simplest case only two pieces of infonnation are needed: the name
of the program to execute and the number of nodes on which to execute it. The command

cubix -n4 noddy

loads the program "noddy" into four transputers and executes it there. The cubix command
has many options but most of these are seldom used.
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ParaSoft Transpuzer System

Pre-booting network
0.. 1..3..2..
Dounloading Express kernel: /usr/express/bln/express.tld

....................... E

Done

Initializing transputer s memory... please stand by...
Allocated i nodes, origin at 0, process 1.D. I
Loading foruarding tables to transputers
0. 1.2.3
Topology initialization complete

Figure 5-1. Screen display after loading Express kernel.

5.3.2 Transputer Memory Map

The left side of figure 5-2 shows the default memory map for the transputer module
with Express loaded. In addition to the 1 Megabyte of external RAM, the transputer chip has
4 KBytes of on-chip RAM. Since this RAM is on-chip with the processor it is extremely fast.
Using compiler switches, the memory map can be modified as shown in the right side of figure
5-2. This modification allows the program's stack to make use of the fast on-chip RAM
resulting in considerable improvement in program speed. The danger is that the stack will
overwrite the low memory addresses and the system will crash catastrophically. Through
trial and error the correct positioning of the stack can be found. This is described in the Express
documentation.

The demo Mandelbrot program was re-compiled with the switch set to allow it to use
the fast on-chip RAM for its stack. This resulted in a 20 percent improvement in speed.
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Figure 5-2. Transputer memory map with Express loaded.

5.3.3 VECLIB
ParaSoft sent an evaluation copy of the Sinectonalysis VECLIB library for vector and

matrix operations on the transputer. The library contains over 250 routines to accelerate
vector/matrix operations for the T800 series of transputers. It is hand-coded in T800 assembler
language and offers a factor of 3-5 times the performance of C, Fortran, Pascal, or Occam. It
is available for Occam, Logical Systems C, 3L C and Fortran running under a number of
environments including Express.
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We decided not to purchase the VECLIB for a number of reasons. One reason was that
none of the 250 routines provided the precise functions needed. Also, since the functions
were developed for C, modifications were required to implement them under Fortran. But
the principal reason against purchasing was the desire to maintain code portability.

5.4 CURRENT ON THE TRANSPUTER

Once CURRENT was successfully compiled and run on the PC and the microVAX, the
next step was to compile and run it on a single transputer. CURRENT compiled without any
problems with the parallel compiler but did not give the correct answer when run. The problem
was fixed by taking out the passing of function names as arguments in subroutines CGQ 1 and
SEGQAD. It is not clear why this was a problem. According to the parallel compiler doc-
umentation, function names can be passed as arguments.

The bus mouse was found to interfere with the transputer motherboard. It turned out
that they both use IRQ line 3. The mouse was put on IRQ line 5, and the problem disappeared.

Several days were spent determining a suitable location in memory to load the Express
kernel. The ParaSoft advice was to change the default location for Express loading to
0x800c8000. This turned out to be fine for running small programs, but when CURRENT
was run on the transputer memory was exceeded. By trial and error it was found that CUR-
RENT ran correctly if Express was loaded at location 0x800e0000.

With the sequential version of CURRENT running on a single transputer, the next step
was to run it on four transputers simultaneously. This worked fine and showed that the time
to run on four transputers was no different than running on one transputer. This indicates that
there is little overhead to loading the program on more than one processor.

To make use of the 4K of fast on-chip RAM, the CURRENT program was loaded at
0x80000ff8. This put the stack in fast RAM. The achieved speedup was 20 percent.

A test was devised to determine the performance penalty for using Express as compared
to a host-node program on the parallel compiler. A version of the demo Mandelbrot program
(with no graphics) was implemented under Express. The result was that the Mandelbrot
program ran as fast under Express as the same program did under the host-node 3L parallel
compiler. Using the fast on-chip RAM for the stack gave a 20 percent speedup in operation
under Express. The times for the Fortran Mandelbrot program with no graphics are give in
table 5-2.

Table 5-2. Times for Fortran Mandelbrot program.

COMPUTER PLATFORM TIME (s)

1 transputer running under Express: 25
I transputer running under Express w/fast stack: 21

33 Mttz 386 w/387 co-processor (Microsoft Fortran 5.0): 57
286 w/287 co-processor (Microsoft Fortran 5.0): 860

MicroVax: 100
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6.0 PARALLEL MATRIX FACTOR AND SOLVE

A prime area in which parallel computing has been applied is the manipulation and
solution of matrices. A large number of technical papers have been written in this area (Angus,
et al., 1988; Fox, et al., 1988; Geist & Romine, 1988; and Heath & Romine, 1988). This
chapter discusses the parallel matrix factor and solve routines that were implemented as part
of this lED.

6.1 SEQUENTIAL LINPACK

As discussed in previous chapters, the JUNCTION formulation determines the currents
on the wires, bodies, and junctions by solving the matrix equation shown in equation 3-22.
This is done by first factoring the matrix by performing Gaussian elimination using LU
decomposition with partial pivoting and then by solving for the current vector using backward
and forward substitution. The library subroutines used are the LINPACK routines CGEFA
and CGESL. CGEFA factors a general complex matrix. CGESL solves a complex matrix
equation using the output from CGEFA.

LINPACK is a collection nf Fortran subroutines that analyze and solve various systems
of simultaneous linear algebra" equations (Dongarra, et al., 1979). The development of this
package began in 197f. ..e LINPACK routines have been tested and validated on many
different computers

6.1.1 CGEFA

A squz .e matrix A can be factored into A = LU where U is an upper triangular matrix
and matri' L is the product of elementary lower triangular and permutation matrices. This
factoriT..tion can be used to solve the linear equation Ax = b by solving L(Ux) = b.

CGEFA uses Gaussian elimination with partial pivoting to compute the LU factorization
of a complex matrix. The calling sequence is

CALL CGEFA(A,LDA,N,IPVT,INFO),

On entry,

A is a doubly subscripted complex array with dimension (LDA,N) which contains
the matrix whose factorization is to be computed.

LDA is the leading dimension of the array A.

N is the order of the matrix A and number of elements in the vector IPVT.

On return,

A contains in its upper triangle an upper triangular matrix U and in its strict lower
triangle the multipliers necessary to construct a matrix L so that A = LU.

IPVT is a singly subscr'pted integer array of dimension N which contains the pivot
information necessary to constnict the permutations in L. Specifically, IPVT(K)
is the index of the K-th pivot row.

INFO is an icteger which, if it is nonzero, technically indicates matrix singularity.
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6.1.2 CGESL

CGESL uses the LU factorization of a complex matrix A (output from CGEFA) to solve
linear systems of the form Ax = b or ATx = b where AT is the transpose of A. The calling
sequence is

CALL CGESL(A,LDA,N,IPVT,B,JOB)

On entry,

A is a doubly subscripted complex array with dimension (LDA,N) which contains
the factorization computed by CGEFA. It is not changed by CGESL.

LDA is the leading dimension of the array A.

N is the order of the matrix A and the number of elements in the vectors B and
IPVT.

IPVT is a singly subscripted integer array of dimension N which contains the pivot
information from CGEFA.

B is a singly subscripted complex array of dimension N which contains the right
hand side b of a system of simultaneous linear equations Ax = b or ATx = b.

JOB indicates what is to be computed. If JOB is 0, the system Ax = b is solved and
if JOB is nonzero, the system A Tx = b is solved.

On return,

B contains the solution vector, x.

6.2 PARALLEL UNPACK

When this lED project was initiated, general parallel versions of the LINPACK sub-
routines were not available. This is because parallel subroutines are by their nature very
machine-specific and one of the goals of the LINPACK project was for the subroutines to be
machine independent.

On sequential computers, the number of computations required to factor a matrix into
a product of triangular matrices is of the order (n3) where n is the dimension of the matrix.
In comparison, the number of computations required for the triangular solution are of the
order (n2). Because of this, unless multiple solutions are required, most effort has focused
on optimizing the factorization algorithm.

On parallel computers, good efficiency is more difficult to obtain for matrix solving
compared to matrix factoring. This is because much more interprocessor communication is
required during solving. Solving is inherently a finer grain process than factoring. Various
parallel algorithms have been proposed. Each one has its advantages and disadvantages that
are dependent on the number of processors being used, the size of the problem being solved,
and the relative cost of communication and computation.

Good load balancing during matrix solving is achieved by using column-wrap mapping
to distribute the matrix columns onto the processors. Column-wrap mapping involves dis-
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tributing the columns sequentially onto the processors. This interleaves the columns onto the
processors. Column-wrap mapping has good load balancing properties and gives excellent
performance when doing LU decomposition, so this was the only scheme considered.

Ed Kushner at Intel Corporation (e-mail kushner@isc.intel.com) sent via e-mail the
source code for Intel's parallel versions of DGEFA and DGESL from UNPACK. DGEFA
and DGESL are double precision noncomplex versions of CGEFA and CGESL respectively.
Included were two different matrix solving routines: a cyclic version and a wavefront version
of DGESL. The differences between these versions are described below. These routines were
all developed for Intel's iPSC parallel computer so a number of modifications were needed
to implement them under Express on the transputer array.

6.2.1 Parallel Matrix Factor

The parallel version of DGEFA is called PGEFA. The matrix factoring routine is
straightforward to parallelize and provides very high efficiencies. This routine assumes
column-wrap mapping. The calling sequence is:

CALL PGEFA(A,LDA,N,M,P,ID,IPVT,BUF 1,BUF2),

On entry,

A is a doubly subscripted array with dimension (LDA,N) which contains the matrix
whose factorization is to be computed.

LDA is the leading dimension of the array A.

N is the order of the matrix A and number of elements in the vector IPVT.

M is the number of columns of A on each node (M = N/P).

P is the number of nodes (processors) allocated.

ID is the processor i.d. number.

On return,

A contains in its upper triangle an upper triangular matrix U and in its strict lower
triangle the multipliers necessary to construct a matrix L so that A = LU.

IPVT is a singly subscripted integer array of dimension N which contains the pivot
information necessary to construct the permutations in L. Specifically, IPVT(K)
is the index of the K-th pivot row.

Notes:

BUF1 and BUF2 are work space buffers each of dimension N+l. They are used during
communication between processors.

6.2.2 Parallel Matrix Solve

The problem being considered is the solution of the lower triangular linear system

Li =h,

where L is a lower triangular matrix of order n, h is a known vector of dimension n, and x is
the unknown solution vector of dimension n. The sequential version of LINPACK solves this
by forward substitution using the following doubly nested loop:
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forj = I to n
x., = b/LR

for i =j+1 ton
bi = b, - xjL.

There are a numbei 9f ways to parallelize this problem on a distributed memory parallel
computer. Several algorithms have been developed. Two of the most popular are the wavefront
algorithm and the cyclic algorithm (Heath & Romine, 1988). These algorithms assume the
matrix is column-wrap mapped onto the processors.

The wavefront algorithm breaks the updating of b into segments and pipelines the
segments through the processors in a wavefront fashion. The n-vector z is used to accumulate
the updates of b so that the components of b remain distributed among the processors. The
size of the circulated segments is an adjustable parameter that controls the granularity of the
algorithm and therefore affects performance. The optimal value of the segment size depends
on the characteristics of the hardware.

The wavefront algorithm is written in pseudocode as:

forj mycols
for k = 1 to # segments

receive segment
if k- I then

x. (b - zi)ILP

segment = segment - {zj}

for z, E segment

z, = z, + xL,

if Isegmend > 0 then
send segment to processor map(j + 1).

The cyclic algorithm is similar to the wavefront algorithm in that they both send a
segment z between processors. However, the cyclic algorithm circulates a single segment of
the fixed size p-l, where p is the number of processors. The name cyclic comes from the
segment cycling through all other processors before returning to a given processor. The
updates computed by the processor while the segment iscirculating elsewhere are stored in
the vector t. The cyclic algorithm is written in pseudocode as:

forj E mycols
receive segment
x, = (b, - z, - t)~

segment = segment - { z1 }

for z, E segment

z' = Z' + ti + xIL4
zj+P-1 = tj +P-I + xjL)p -',
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segment = segment U{z.+ p}
send segment to processor map(j+ I)
for i =j + p to n

t' =t. +xj 0

Theoretical analysis shows that the cyclic algorithm performs best on a small number
of processors whereas the wavefront algorithm performs best on a large number ef processors.
The performances of the two algorithms cross at about P=16, where P is the number of
processors.

The cyclic parallel version of DGESL is called PGESL 1. The wavefront parallel version
of DGESL is called PGESL2. The calling sequence for both versions of PGESL is:

CALL PGESL(A,LDA,N,M,P,ID,IPVT,B,WORK,MSG)

On entry,

A is a doubly subscripted complex array with dimension (LDA,N) which contains
the factorization computed by CGEFA. It is not changed by CGESL.

LDA is the leading dimension of the array A.

N is the order of the matrix A and the number of elements in the vectors B and
IPVT.

M is number of columns of A on each node assuming column wrap mapping.

P is the number of nodes (processors) allocated.

ID is the processor i.d. number.

IPVT is a singly subscripted integer array of dimension N which contains the pivot
information from CGEFA.

B is a singly subscriptei complex array of dimension N which contains the right
hand side b of a system of simultaneous linear equations Ax = b.

On return,
B contains the solution, x.

Notes:

WORK is a work space vector of diriension N

MSG is a work space vector of dimension P

In addition, the user might also want to pass the segment size to the wavefront algorithm
routine.

6.2.3 Implementation of Parallel UNPACK under EXPRESS

A number of modifications were needed to the Intel parallel LINPACK routines to
implement them on the transputer array operating under ParaSoft Express. These modifi-
cations fell into three categories:

1. converting double precision variables to complex variables,
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2. using complex LINPACK routines instead of the equivalent double precision
LINPACK routines, and

3. using Express communication functions/routines instead of iPSC commu-
nication functions/routines.

This last category was by far the most difficult to implement for reasons given below:

" Not being familiar with the iPSC made determining the effect of a given
communication function/routine difficult.

• Sometimes it was difficult to determine the effect of the parameters being
passed to a communication routine.

* Occasionally Express did not have an equivalent communication function-
/routine.

All these difficulties were eventually overcome.

Converting from double precision to complex variables was a simple process of replacing
the DOUBLE PRECISION type statements with COMPLEX type statements and making
sure initialization was handled correctly.

Table 6-1 lists the names of the double precision LINPACK routines needed to be
replaced with the listed complex counterparts.

Table 6-1. LINPACK routines.

LINPACK ROUTINES
Double Precision Complex

DAXPY CAXPY

DCOPY CCOPY

DFILL CFILL

DSCAL CSCAL

DSWAP CSWAP

DVADD CVADD

IDAMAX ICAMAX

Table 6-2 lists the iPSC communication routines/functions and the equivalent Express
communication routines/functions as well as a description of the operation each one performs.

Other modifications needed to be made included replacing the "include fcube.h" line in
the iPSC program with the Express common block. Also, at the end of the matrix solving,
the iPSC routines collected the answer in node 0. This was modified so that the answer was
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Table 6-2. Communication routines/functions for the iPSC and Express.

COMMUNICATION ROUTINES/FUNCTIONS

iPSC Express Description

Subroutine CSEND Function KXWRIT Send a message node to node

Function IRECV Function KXRECV Read a message (nonblocking)

Subroutine Parameter MSG Check (MSG) until it is >= 0.
MSGWAIT(msg) from KXRECV (Can set up Fortran loop to do this)

IF (ID.EQ.x) Function Interprocessor broadcast
CALL CSEND KXBROD

ELSE
CALL CRECV

ENDIF

Subroutine Function Read a message (blocking)
CRECV KXREAD

Subroutine GCOL Function Collect and concatenate data
KXCONC in a set of nodes

Function Parameter ISRC Source node for message
INFONODE0 from KXREAD II from

collected/broadcast to all nodes under Express. The wavefront routine was modified so that
the segment size (ISEGSIZE) was passed as an input parameter in the argument list instead
of being set to a value of 12.

6.2.4 Results

Performance measurements were made of both the parallel matrix factor routine and the
two parallel matrix solve routines. In order to measure performance, timing routines were
included in the algorithms using the Express timing function KXTIME. Timings were made
using one, two, three and four processors. The timing measurements were converted to the
standard performance measurement parameters, speed-up and efficiency, using equations 2-1
and 2-2.

Due to memory limitations, examples with more than 200 unknowns could not be run
on a single transputer. Several sample problems were developed to test out the parallel factor
and solve routines. The four sample problems had the following number of unknowns: 104,
116, 155, and 189.
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6.2.4.1 Factor. Figure 6-1 shows the timing results on the parallel version of CGEFA for
the four sample problems. Figure 6-2 shows speed-up and figure 6-3 shows efficiency. The
important issue is that as the number of unknowns increases the parallel matrix factoring
routine becomes more efficient. This is expected since small problems do not achieve good
load balancing and cannot benefit greatly from parallel computation. An efficiency of over
90 percent is considered very good.
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Figure 6- 1. Timing for parallel miatrix factoring routine.
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6.2.4.2 Solve. The performance of the two parallel matrix solve routines were measured for
all the example problems. The results are shown here for the largest problem, the one with
189 unknowns. Table 6-3 shows the results for the cyclic algorithm.

Table 6-3. Performance results for cyclic algorithm for 189 unknowns.

Number of Time, Speedup Efficiency
Processors seconds (%)

1 0.621 1.00 100

2 0.367 1.69 84.5

3 0.257 2.42 80.7

4 0.207 3.00 75.0

The performance results for the wavefront algorithm are complicated by the presence
of the adjustable segment-size parameter. This segment-size parameter can range from I to
the number of unknowns. Table 6-4 shows the optimal performance segment size and time.
Figures 6-4 through 6-7 show the timing results for matrix solve time using the wavefront
algorithm as a function of segment size for one, two, three, and four processors. The optimal
performance segment size appears to be a function of the number of processors (as well as
the number of unknowns). In addition, by comparing the timing resu.ts for the wavefront
algorithm with the results for the cyclic algorithm it can be seen that even using the optimum
segment size the performance for the wavefront algorithm is much worse than the cyclic
algorithm. Because of these two reasons the wavefront algorithm was rejected for use on the
size of problem which could by run on the four processor transputer army. However, it must
be noted that the performance results could turn out to be very different on a high performance
computer with many more processors running larger problems.

Table 6-4. Performance results for wavefront algorithm for 189 unknowns.

Number of Optimal Time,
Processors segment size seconds

1 95 0.741

2 72 0.555

3 34 0.448

4 24 0.380
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7.0 PARALLEL MATRIX FILLING

Developing a highly efficient general routine for parallel matrix filling was much more
difficult in comparison to the work required to parallelize the matrix factor and solve routines.
This was due to several reasons: the large variety of problem geometries being solved, shared
calculations between matrix columns, memory limitations, and concurrent filling of the
excitation vector.

7.1 SEQUENTIAL MATRIX FILLING

In JUNCTION the columns of the matrix correspond to source points on the structure.
The rows of the matrix correspond to observation points on the structure. The body
columns/rows come before the wire columns/rows, but otherwise the ordering of the
columns/rows depends on how the problem was specified in the input data portion of the code
(DATGN). The junction points are scattered within the wire portion of the matrix. Wire
columns coirespond to nodes on the wires whereas body columns correspond to sides of
triangular patches on the surfaces. A junction is a node on a wire, hence its location is in the
wire portion of the matrix. Table 7-1 shows the layout of the matrix.

Table 7-1. Layout of the impedance matrix.

SOURCE POINTS

Body Source Wire Source
OBSERVATION Body Observation Body Observation

POINTS Body Source Wire Source

Wire Observation Wire Observation

The filling of the matrix is performed in four subroutines: ZBB, ZWB, ZBW, and ZWW.
The filling of the excitation vector is performed only in subroutines ZBB and ZWW. Table
7-2 shows in which subroutines the different portions of the matrix are filled.
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Table 7-2. Subroutines used for matrix filling.

SOURCE POINT OBSERVATION SUBROUTINE(S)
(COLUMN) POINT USED

(ROW)

Body Body ZBB

Body Wire ZWB

Body Junction ZBB, ZWB

Wire Body ZBW

Wire Wire ZWW

Wire Junction ZWW, ZBW

Junction Body ZBB, ZBW

Junction Wire ZWW, ZWB

Junction Junction ZWW, ZBB

7.2 COLUMN-MAPPING TECHNIQUES

A wide variety of techniques can be used to map the columns of the matrix onto the
processors. A column-wrap-mapping technique was used for matrix factoring and solving as
described in the previous chapter.

It quickly became apparent that column-wrap mapping was not necessarily the best
method to use for parallelizing the matrix-filling portion of the code. Adjacent columns of
the matrix are often associated with each other. For bodies, adjacent columns are usually
either on the same face or on an attached face. For wires, adjacent columns often refer to
nodes joined by the same segment. In JUNCTION, calculations are made with respect to
faces and segments, not edges and nodes. This avoids duplication of work in a serial com-
putation. Alternative methods for mapping the columns onto the processors were needed.
(Note: mapping the rows onto the processors (instead of the columns) was never considered
since matrix factoring required the columns to be already mapped onto the processors).

Alternative mapping techniques were devised and evaluated. The techniques and per-
formance results are described below in the section on structural dependencies. We found
that using a different mapping technique to fill the matrix did not compromise the output from
matrix solving. The only effect was to scramble the output vector. The output vector is easily
and rapidly unscrambled at the end of the matrix solve routines. Unscrambling the output
vector at the end is much faster than unscrambling the matrix before the matrix factor routine,
since much less interprocessor communication is required for the former.
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7.3 CODE MODIFICATIONS

Matrix filling was parallelized by modifying the loops within subroutines ZBB, ZWW,
ZWB, and ZBW to require a given processor to do only the calculations associated with the
matrix columns mapped onto the processor. This is fairly straightforward since with ParaSoft
Express each processor knows its identification number as well as the total number of pro-
cessors working on the problem.

Parallelizing matrix filling involved much more extensive modifications to the
sequential version of the code than were required for parallelizing matrix factoring and solving.
Not only did subroutines ZBB, ZWW, ZWB, and ZBW need to be changed, but initialization
code was added at the beginning of CURRENT and modifications were made to the matrix
solve routines to unscramble the output vector.

To determine which type of column mapping technique was desired another input file,
FOR017, was added to CURRENT. This file contains just one value, an integer that is read
into variable NWRAP. Table 7-3 shows the correspondence between the value read into
NWRAP and the mapping techniques. These techniques are described in section 7.4 below.

Table 7-3. Correspondence between NWRAP and mapping technique.

NWRAP COLUMN MAPPING TECHNIQUE

0 Pure block mapping

I Wrap mapping

>=2 Block wrap mapping using
a block si7e of NWRAP

-1 Random mapping

-2 1st order mapping

7.4 STRUCTURAL DEPENDENCIES

The performance of the parallel matrix-filling algorithm was found to be very dependent
on the structure being analyzed. The first types of problems analyzed were for homogeneous
structures. Homogeneous structures are defined as having either only body elements or only
wire elements. Next, heterogeneous structures were evaluated. Heterogeneous structures
are defined as having a mixture of body, wire, and junction elements.

7.4.1 Homogeneous Structures

Six types of structures were considered: straight wires, cylinders, plates, cones, disks,
or spheres. The performance of the parallel matrix-filling routines was evaluated for
homogeneous problems made up of each of these types of structures. Two column-mapping
techniques were compared for each structure type. The two techniques used were column-wrap
mapping and column-block mapping. Column-wrap mapping consists of interleaving the
columns onto the processors. It is described in detail in section 7.2. Column-block mapping
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consists of distributing the columns onto the processors using contiguous blocks of columns
rather than individual columns. As an example, if 4 processors were being used to fill a matrix
with 100 columns, using column-block mapping would mean that the first processor would
fill the first 25 columns, the second processor would fill the second 25 columns, and so on.

Four sample problems were developed for each structure type. The number of unknowns
ranged from 40 to 200. Each sample problem was run on both a single transputer and four
transputers. Measurements were made of both matrix-filling time and matrix-solving time
for both column-wrap mapping and column-block mapping.

Table 7-4 shows the measured times and calculated efficiencies for matrix filling for
the different structures using wrap and block mapping. The data are displayed graphically in
figures 7-1 through 7-3.

Table 7-4. Matrix-filling times/efficiencies for various structures.

Structure Number of 1 Processor 4 Processors

Type Unknowns Wrap Mapping Block Mapping

TIME,sec TIME EFFIC TIME EFFIC

WIRE 47 7.38 3.32 55.6% 1.97 93.7%
97 30.78 14.06 54.7% 8.08 95.2%
147 70.51 31.54 55.9% 17.95 98.2%
197 126.06 56.91 55.4% 32.22 97.8%

CYLINDER 56 8.56 4.97 43.1% 2.80 76.4%
104 27.04 15.78 42.8% 7.94 85.1%
152 55.95 32.69 42.8% 15.68 89.2%
200 95.17 55.62 42.8% 25.99 91.5%

PLATE 40 5.12 2.66 48.1% 1.66 77.1%
96 25.11 12.69 49.5% 7.88 79.7%
133 45.7 25.95 44.0% 14.01 81.5%
176 76.87 39.15 49.1% 21.92 87.7%

CONE 52 7.15 4.08 43.8% 2.54 70.4%
100 24.09 13.88 43.4% 7.36 81.8%
155 55.85 29.12 47.9% 16.56 84.3%
200 90.52 46.58 48.6% 25.31 89.4%

DISK 49 6.60 3.77 43.8% 2.77 59.6%
98 25.19 13.7 46.0% 10.42 60.4%
150 55.65 29.84 46.6% 20.05 69.4%
200 97.01 53.12 45.7% 34.33 70.6%

SPHERE 60 9.06 4.82 47.0% 3.23 70.1%
90 19.75 10.65 46.4% 6.85 72.1%
168 66.56 37.98 43.8% 20.27 82.1%
198 91.84 47.99 47.8% 28.96 79.3%
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Figure 7-2. Matrix-filling efficiency for four processors. wrap mapping.
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Figure 7-3. Matrix-filling efficiency for four processors, block mapping.

From the previous table and figures, several interesting observations can be made. For
a single processor it is seen that an all-wire homogeneous matrix takes longer to fill than an
all-body homogeneous matrix of the same size. On average, an all-wire matrix took about
38 percent longer to fill than the same size all-body matrix. The cylinder, plate, cone, disk,
and sphere matrices all took about the same time to fill a given size matrix.

When the sample problems were run on four processors, distinct structural dependencies
emerged for filling times and efficiencies. It is important to note that column-block mapping
always performed better than column-wrap mapping. Column-block mapping filling effi-
ciencies were almost always greater than 70 percent, whereas column-wrap mapping filling
efficiencies were always between 40 and 60 percent. Interestingly, each structure performed
differently in filling efficiencies. For column-wrap mapping, wires performed best, followed
by plates, cones, spheres, disks, and, then, cylinders. For column-block mapping, wires again
performed best, followed by cylinders, plates, cones, spheres, and, then, disks. These results
are due to the nature of the physical connectivity of the various structures and how their
elements are distributed to the columns of the matrix. Again, in JUNCTION calculations are
made with respect to faces and segments. To avoid duplication of computation on the pro-
cessors, it is advantageous to have all the edge computations for a given face to be on the
same processor. For a wire, both nodes of a given segment should be on the same processor.

Table 7-5 shows the measured times and calculated efficiency for matrix factoring and
solving for the different structures. The efficiency data are displayed graphically in figure
7-4.
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Table 7-5. Matrix factor and solve times/efficiency for various structures.

Structure Number of 1 Processor 4 Processors

Type Unknowns TIME TIME EFFIC
(sec) (sec) (%)

WIRE 47 0.66 0.22 75.0
97 5.34 1.48 90.2
147 18.09 4.81 94.0
197 42.94 11.19 95.9

CYLINDER 56 1.13 0.35 80.7
104 6.70 1.81 92.5
152 20.22 5.34 94.7
200 45.36 11.79 96.2

PLATE 40 0.42 0.15 70.0
96 5.12 1.44 88.9
133 13.35 3.58 93.2
176 30.55 8.04 95.0

CONE 52 0.92 0.29 79.3
100 5.97 1.63 91.6
155 21.45 5.63 95.2
200 45.41 11.79 96.3

DISK 49 0.78 0.25 78.0
98 5.60 1.54 90.9
150 19.48 5.11 95.3
200 45.32 11.78 96.2

SPHERE 60 1.37 0.41 83.5
90 4.38 1.21 90.5
168 27.10 7.11 95.3
198 44.02 11.41 96.5

In matrix factoring and solving there are no structural dependencies. Note that as the
number of unknowns increases, the factoring and solving efficiencies increase. For 200
unknowns factoring and solving efficiency is greater than 95 percent. Matrix-filling efficiency
also increases as the number of unknowns increases.
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Figure 7-4. Matrix factor and solve efficiencies for 4 processors.

7.4.2 Heterogeneous Structures

The heterogeneous structures that were evaluated consisted mostly of square plates with
numerous attached wires. This allowed the evaluation of matrices with various numbers of
body, wire, and junction columns.

After evaluating a large number of heterogeneous problems, a number of observations
were made. These nhservations are summarized below:

" The junction columns are scattered within the wire portion of the matrix. The
distribution of the junction columns depends on how the problem is initially
specified in DATGN. Fortunately, it is fairly straightforward to convert from
junction number to matrix column number.

* A junction can connect to between one and six faces on a body. A quirk of
JUNCTION is that the code will only recognize a maximum of one junction
attached to a given face.

* To achieve maximum efficiency, the filling of a junction column should be
done by the same processor filling the columns associated with the faces to
which the junction is attached, since a large part of the calculations are in
common. The problem here is that the associated body columns are sometimes
scattered all through the matrix.

• The time to fill a matrix is a function of many things including: relative/absolute
number of wire, body, and junction unknowns; number of separate wires;
number of segments on each wire; locations of wires and junctions relative to
a body; number of faces connected to each junction.
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* Developing a general method for balancing the work load and achieving
optimum efficiency for a heterogeneous problem is very complicated, even for
the simple problems studied involving a single plate with various attached
wires. If the choice is between block and wrap mapping, block mapping gives
better results. (For the problems studied, block mapping was 62 to 93 percent
efficient, whereas wrap mapping was 41 to 52 percent efficient).

Based on the above observations, a decision was made to implement two additional
column-mapping techniques. Both techniques are modifications of the standard block-
mapping technique.

The first technique is called random mapping. Random mapping is block mapping with
one twist: instead of the junction columns staying grouped with the wire columns, the junction
columns are filled by the processors which are filling the body columns of the matrix. The
columns are redistributed to keep a balanced number of columns on each processor. As an
example, suppose a matrix has 50 body columns, 50 wire columns, and 6 junctions, and the
problem is being run on 4 processors. Under standard column-block mapping the first 25
body columns would be filled by the first processor, the second 25 body columns would be
filled by the second processor, the first 25 wire columns would be filled by the third processor,
and the second 25 wire columns would be filled by the fourth processor. Thejunction columns,
being wire columns also, would be distributed on the third and fourth processors. Under
random mapping the six ju-ction columns would first be distributed to the first two processors
in the following manner: junction 1 column to first processor, junction 2 column to second
processor, junction 3 column to first processor, junction 4 column to second processor, and
so on. The first and second processors would each have 3 junction columns. Block processing
would then be used to distribute the body and remaining wire columns, so that each processor
would finish up with 25 total columns as before.

The second technique is called first-order mapping. This is similar to the random
mapping described above except now thejunction columns are assigned to the body processors
using knowledge of which processor will be calculating the majority of columns associated
with the faces to which that junction is attached. This could potentially cause more junction
columns to end up on one of the body processors than another, but the improvement in
performance could be significant.

An analysis of matrix-filling efficiency was run on four processors for the problem of
a square plate with 8 wires attached to it. The problem involved 96 body unknowns, 96 wire
unknowns, and 8 junctions. The four different column-mapping techniques were used. The
results are shown in table 7-6.

The results show that random mapping only gives a slight improvement over block
mapping, but first-order mapping gives a significant improvement over block mapping.
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Table 7-6. Efficiencies of various mapping techniques.

Mapping Technique Efficiency (%)

WRAP 40.5

BLOCK 61.8

RANDOM 63.9

FIRST ORDER 76.9
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8.0 RESULTS AND CONCLUSIONS

8.1 PERFORMANCE COMPARISONS

Comparisons were run for the microVax, a single transputer, the four- transputer array,
and the Convex Model C-220. The Convex is a mini-supercomputer that can do some
automatic vectorization.

Sample data sets were generated for both bodies and wires. Eight body data sets were
generated with 104, 152, 200, 248, 296, 356, 404, and 452 unknowns. Eight wire data sets
were generated with 47, 97, 147, 197, 247, 297, 347, and 397 unknowns. For each data set
and each hardware platform timing measurements were made for both matrix filling and matrix
factoring and solving. On the four-transputer array, the data sets were run using both
column-wrap mapping and column-block mapping. On the Convex, measurements were made
of both CPU time and actual elapsed time. At the time the measurements were made, there
were 13 other users on the Convex and elapsed time averaged about 3.5 times longer than
CPU time. This should be kept in mind when making comparisons between the various
hardware platforms. Results are shown in tables 8-1 through 8-4.

Table 8-1. Time to fill all-body matrix, seconds.

Number COMPUTER PLATFORM

of MicroVax 1 Xputer 4 Xputers CONVEX

Unknowns Wrap Map Block Map CPU Elapsed

104 73.7 26.6 16.7 8.8 5.1 20
152 151.7 55.0 33.4 16.5 10.7 26
200 257.5 93.8 56.1 26.6 18.3 69
248 394.0 85.4 39.7 27.9 105
296 555.9 120.1 54.9 39.4 145
356 801.6 172.8 78.0 56.9 201
404 1027.8 221.4 99.1 73.1 260
452 1282.3 276.1 122.9 91.4 329
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Table 8-2. Time to factor and solve all-body matrix, seconds.

Number COMPUTER PLATFORM

of MicroVax 1 Xputer 4 Xputers CONVEX

Unknowns Wrap Map Block Map CPU Elapsed

104 15.1 6.7 1.8 1.8 0.5 2
152 45.5 20.2 5.3 5.3 1.3 4
200 101.8 42.7 11.7 11.8 2.8 7
248 191.9 21.9 22.1 5.1 32
296 323.7 36.9 37.1 8.5 30
356 559.9 63.6 63.9 14.5 55
404 814.3 92.5 92.8 21.0 79
452 1137.2 129.0 129.4 29.1 102

Table 8-3. Time to fill all-wire matrix, seconds.

Number COMPUTER PLATFORM

of MicroVax 1 Xputer 4 Xputers CONVEX
Unknowns Wrap Map Block Map CPU Elapsed

47 19.1 7.3 3.3 2.0 0.9 1
97 78.9 30.6 14.0 8.0 3.6 9

147 180.5 70.1 31.4 17.9 8.3 23
197 322.4 125.4 56.7 32.0 14.9 54
247 505.3 88.0 49.6 23.4 112
297 729.3 127.8 71.9 33.8 154
347 993.7 173.1 97.2 46.0 166
397 1302.1 1 227.8 127.8 60.2 172

The above data were curve fit to equations. Matrix filling should be proportional to N2.

Matrix factoring and solving should be proportional to N'. (Note: Matrix solving should be
proportional to N2, but since factoring takes much longer than solving, factoring plus solving
is effectively proportional to N'.)
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Table 8-4. Time to factor and solve all-wire matrix, seconds.

Number COMPUTER PLATFORM

of MicroVax 1 Xputer 4 Xputers CONVEX

Unknowns Wrap Map Block Map CPU Elapsed

47 1.6 0.7 0.2 0.2 0.1 0
97 12.3 5.3 1.5 1.5 0.4 1

147 41.2 18.1 4.8 4.8 1.2 5
197 97.4 42.9 11.1 11.1 2.7 10
247 189.9 21.5 21.5 5.0 26
297 327.8 37.0 37.0 8.6 35
347 520.2 58.6 58.6 13.4 39
397 776.0 87.4 87.4 19.8 57

The equation for filling time, Tru, is

Tfil,= aN2 .

The equation for factor and solve time, T,,, is

T/ = bN3 .

The proportionality constants, a and b, were calculated for each computer platform for
both bodies and wires. The values are shown in table 8-5.

The results show that the microVax fills a wire matrix 32 percent slower than it fills a
body matrix of the same size. Using column-wrap mapping the four transputers fill a wire
matrix 8 percent slower than they do a body matrix. In contrast, the Convex fills a wire matrix
15 percent faster than it does a body matrix! This may be due to the Convex's automatic
vectorizing abilities. For comparison, a single transputer fills a wire matrix 36 percent slower
than it fills a body matrix. The 8 percent figure for the four transputers can be accounted for
by the fact that the wire-filling efficiency (55 percent) is about 28 percent greater than the
body-filling efficiency (40 percent) for these problems and 28+8=36. The conclusion here is
that for the JUNCTION code, sequentially speaking, wire filling takes about one-third longer
than body filling.

Some of the comparison data are displayed graphically in figures 8-1 through 8-3. The
figures show comparisons between the four-transputer array, the Convex (CPU time), and
projected results for a 16-transputer array. Results are projected for greater than 450 unknowns
using the a and b proportionality constants from table 8-5. A four-transputer array with I
Megabyte of RAM per node can solve problems with up to 450 unknowns. With a
16-transputer array, problems with more than 900 unknowns could be solved.
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Table 8-5. Proportionality constants for bodies and wires.

COMPUTER BODIES WIRES
PLATFORM j a b a b

MicroVax 0.006247 1.23E-5 0.008248 1.24E-5

1 Transputer 0.00239 5.68E-6 0.00326 5.72E-6

4Transputers - 0.001341 1.39E-6 0.001441 1.39E-6
Wrap Mapping _

4 Transputers - 0.000589 1.40E-6 0.000807 1.39E-6
Block Mapping

Convex 0.000446 3.13E-7 0.000381 3.16E-7
(CPU time) I I I I _ I

The plots show that a 16-transputer array would perform better than the Convex for
filling the matrix and almost as good as the Convex for factoring and solving the matrix. A
16-transputer array, including the motherboard, would cost about $15K.
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Figure 8- 1. Matrix-filling time comparisons, block mapping.
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8.2 OBSERVATIONS

In the course of working on this lED project a number of observations were made
regarding transputers, ParaSoft Express, and parallel processing in general:

" A transputer array is an inexpensive, flexible parallel processing platform.
An array of four transputer modules, each with 1 Megabyte of RAM, plus the
PC motherboard cost less than $5K. The transputer array is very flexible since
the number of processors can be easily expanded (just plug more modules in
the sockets) and any Fortran code which runs on the PC can be modified to
run on the transputer array.

" ParaSoft Express has been of great utility. Without Express it would have
been very difficult to make the progress that was made in parallelizing the code
during the course of this lED investigation. In addition, major modifications
to the existing code would have been required, if not a complete rewriting of
the code. Express will allow the porting of the code to another computer
platform to be much more direct.

" Runningan existingprogram on one transputeris very straightforward using
Express. By adding just a few lines of code, then recompiling using the parallel
compiler, and linking the object files to Express, an executable module that
runs on a single transputer can be created for virtually any Fortran program
that runs on the PC.

* The effort required to parallelize a code is algorithm dependent. Some
algorithms can be parallelized just by adding several lines of code. Other
algorithms require extensive restructuring. Still other algorithms are not suited
for implementation on a parallel computer and must be left as sequential code.
It is not always obvious beforehand which algorithms will be efficient to
parallelize and which won't.

" The optimal parallel code can be dependent on the number and type of
processors as well as the size of the problem being solved. This was shown
to be the case with the matrix solve algorithms. Two algorithms were tested:
a cyclic implementation and a wavefront implementation. Although the cyclic
implementation outperformed the wavefront implementation for our transputer
array, the literature suggests that the wavefront implementation will be the best
performer for a massively parallel computing platform solving larger problems.

8.3 PROJECT PAYOFFS

Several payoffs have resulted, or will result, from the work done on this lED project:
• A computer platform now exists for the efficient transition of computational

electromagnetics to high-performance computing. The transputer array can
be used to initiate parallelizing an existing computer code.

* This next generation increase in processing speed will permit more accurate
modeling of ship topsides and extend the practical method of moments
modeling of ships to high HF through low UHF bands. This will make new,
innovative ship designs much more feasible.
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Since topside synthesis is accomplished by iterative analysis, design quality
will significantly improve with the enhanced speed offered by high-
performance computing.
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9.0 THE FUTURE

9.1 OTHER HARDWARE

One of the goals of this project, which unfortunately was not accomplished, was to port
the code over to a high-performance computer using Express. The target computer for this
was NOSC Code 70's iWarp computer, but problems occurred due to its late arrival and the
substitution of an older version of processing chip would not allow Fortran code to run. The
newer model of iWarp processor should be installed in January 1992.

9.2 NEW TECHNOLOGY

The state-of-the-art technology in the area of parallel processing changes monthly both
for hardware platforms and software tools. The transputers used for this project will soon be
outdated, replaced by faster and more flexible processing units. New features are continuously
being added to Express to make it more powerful and adaptable.

9.2.1 Future Hardware

The big news in the world of transputers is the development of the T9000 (Pountain,
1990). This next generation processor is being developed by the same company, INMOS,
which did the original pioneering work on the development of the transputer. According to
the manufacturer the key features of the T9000 are a high-performance pipelined superscalar
processor and major support for multiprocessing applications. Peak performance will be more
than 150 MIPS and 20 MFLOPS, representing a major advance in parallel computing and
high-speed communications. The design goals for T9000 were to enhance the transputer's
position as the premier multiprocessing microprocessor, and to establish a new standard in
single processor performance, while maintaining compatability with existing transputer
products. Of course, there will be some delay between the release of the T9000 and the
development of compatible motherboards and software.

9.2.2 Future Software

A great deal of effort is going into developing programming software for parallel
computing environments. This software includes parallel compilers, debuggers, performance
analysis tools, visualization tools, dynamic load balancing tools, and automatic parallelization
tools. Most of the presently existing software in these areas are very crude.

ParaSoft is in the process of improving Express. New tools being added include VTOOL,
ASPAR, and EXDIST. VTOOL will allow memory access visualization. ASPAR provides
automatic parallelization of sequential C programs. EXDIST will provide dynamic load
balancing. ParaSoft's ultimate goal is to run Express within a heterogeneous parallel pro-
cessing environment, known as a "meta" computer. A "met " computer is made up of a
number of architecturally different computers which are networked together and perform as
a single entity.
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9.3 COMPUTATIONAL CODES

The goal of this IED project was to put a single computational code into a parallel
processing environment. The JUNCTION code, developed at the University of Houston, is
the latest MoM algorithm. A number of other codes are used for CEM and would benefit
from being put into the parallel processing environment.

The MoM is used for lower frequency analysis (below 30 MHz). It is based on the
solution of integral equations. For higher frequency analysis (above 300 MHz), a code such
as NEC-basic scattering code (NEC-BSC) is needed. NEC-BSC is based on asymptotic
techniques formulated in terms of the geometrical theory of diffraction (GTD) or uniform
theory of diffraction (UTD). Two other codes which are also based on UTD are the ray tracing
and casting model (RTC) and the multiple obstacle gain reduction model (GMULT). RTC
was developed by Rockwell International. GMULT was developed at Georgia Tech. RTC
and GMULT are NAVSEA EM Engineering tools.

NEC-BSC is used for analysis of the Fresnel region fields and far-field patterns of
antennas in the presence of complicated scattering structures. RTC computes microwave
electromagnetic fields. GMULT computes microwave antenna patterns and can be used to
predict the near-field electromagnetic environment. It is based on an analytical algorithm and
uses a spherical angle function (SAF) representation of the electric field.

NEC-BSC, RTC, and GMULT could all benefit from being put into a parallel processing
environment.

61



10.0 GLOSSARY

AI associate investigator

AT advanced technology

BSC basic scattering code

CEM computational electromagnetics

CPU central processing unit

EFIE electric field integral equation

FPU floating point processing unit

GMULT multiple obstacle gain reduction model

GTD geometric theory of diffraction

HF high frequency

HPC high-performance computing

I/O input/output

IED independent exploratory development

LLNL Lawrence Livermore National Laboratory

MFIE magnetic field integral equation

MFLOPS mega floating-point operations per second

MIHZ megahertz

MIMD multiple instruction multiple data

MIPS millions of instructions per second

MoM method of moments

NEC numerical electromagnetic code

NEEDS numerical electromagnetic engineering design system

PC personal computer

PI principal investigator

RAM random access memory

RTC ray tracing and casting model

SAF spherical angle function

SIMD single instruction multiple data

SISD single instruction single data

TRAM transputer module

UHF ultrahigh frequency

UTD uniform theory of diffraction

VLSI very large-scale integration

XT extended technology
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